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Test spaces are mathematical structures that underlie quantum logics in much 
the same way that Hilbert space underlies standard quantum logic. In this 
paper, we give a coherent account of the basic theory of test spaces and show 
how they provide an infrastructure for the study of quantum logics. If L is the 
quantum logic for a physical system 5 P, then a support in L may be interpreted 
as the set of all propositions that are possible when 5 P is in a certain state. We 
present an analog for test spaces of the notion of a quantum-logical support and 
launch a study of the classification of supports. 

1. I N T R O D U C T I O N  

Ear ly  in the deve lopmen t  o f  q u a n t u m  logic, it was hoped  tha t  o r tho-  
m o d u l a r  lattices, or  pe rhaps  o r t h o m o d u l a r  posers,  would  p rov ide  a ma the -  
mat ica l  basis for  nonclass ical  p robab i l i t y  theory  in much  the same way tha t  
s igma fields o f  sets p rovide  a f ounda t i on  for  classical  p robab i l i t y  and  
statistics.  Indeed,  this turned  out  to be true for the p robab i l i t i e s  assoc ia ted  
with the measuremen t  of  var iables  tha t  are nei ther  c o m p o u n d  nor  sequen- 
tial. In the classical case, the field p roduc t  o f  s igma fields affords an 
a p p r o p r i a t e  fo rmula t ion  for p robabi l i t i es  associa ted  with c o m p o u n d  exper-  
iments,  and  it was an t ic ipa ted  that  an ana logous  cons t ruc t ion  could  be 
found  for  the more  general  q u a n t u m  logics. However ,  such a cons t ruc t ion  
presents  difff icult ies--even if o r t h o m o d u l a r  posets  are replaced by  more  
general  o r thoa lgebras .  

In  re t rospect ,  the difficulty is appa ren t  even for  o r t h o d o x  q u a n t u m  
mechanics  based  on a Hi lbe r t  space .2/g, where the s t anda rd  q u a n t u m  logic 
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L is understood to be the complete orthornodular lattice of  all projection 
operators on J : .  In the passage from the wave functions comprising ~t ~ to 
the logic L, one loses the phase information essential for dealing with 
sequential measurements. For an explicit discussion of this difficulty in 
connection with sequential Stern-Gerlach experiments, see Wright (1978). 
Mathematical structures that underlie general quantum logics in the same 
way that Hilbert space underlies standard quantum logic are required to 
resolve the difficulty. Among the structures that have been proposed for 
this purpose are manuals (Randall and Foulis, 1973; Foutis and Randall, 
1978), spaces (Gerelle et al., 1974), hypergraphs (Gudder  et al., 1986), cover 
spaces (Gudder, 1986), generalized sample spaces (K1/iy, 1988), and test 
spaces (Foulis, 1989). 

This paper may be regarded as a sequel to Foulis et al. (1992), 
henceforth abbreviated FGR-I.  In FGR-I,  we introduced the idea of a local 
filter F in an orthoalgebra L. If the elements of L are regarded as 
propositions, then F may be viewed as all propositions in L that are 
necessarily true under a specific set of circumstances, e.g., when the system 
under investigation is in a certain state. Thus, S :=  { P e L l P ' r  may be 
regarded as all propositions in L that are possible under these circumstances. 
Such a subset S of L is called a support, and, since F = {p~L ]p '~S},  the 
support S uniquely determines the local filter F. Hence, from a strictly 
mathematical point of view, it is a matter of indifference whether we focus 
attention on local filters or on supports in orthoalgebras. Our purpose in the 
present paper is to extend these considerations to the test spaces that 
underlie orthoalgebras, where it turns out to be more convenient to deal with 
supports than with local filters. We begin by giving a coherent account of 
the basic theory of test spaces and their relationship to orthoalgebras. 

2. DEFINITION OF AND HEURISTICS FOR TEST SPACES 

The classical mathematical theory of  probability is traditionally based 
on the notion of a sample space J(, which, for heuristic purposes, is usually 
regarded as the set of all mutually exclusive and exhaustive outcomes of a 
certain experiment, measurement, test, physical operation, or other well- 
defined, reproducible procedure ~ .  The sample space X is conceived of as 
a mathematical representation of ~ .  Practical experimental programs, 
however, often involve more than one such procedure and, as a conse- 
quence, the sample X for such a program should be regarded as a union of  
the outcome sets of these procedures. This leads us to the following 
definition: 

Definition 2. I. A test space is a pair (X, 5-) consisting of a nonempty 
set X and a collection 5- of subsets of X satisfying the following conditions. 
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(i) (Covering) Each x ~ X  belongs to at least one set E ~ Y .  
(ii) (Irredundancy) I f  E, F ~ -  and E ~ F, then E = F. 

I f  (Jr-, Y )  is a test space, elements x ~X are called outcomes, and sets 
E ~ -  are called tests or operations. By abuse of  notation, we often refer to 
"the test space X," when what we really mean is "the test space (X, J ) . "  
We refer to J as the quasimanual of tests or operations for the test space 
X. 

The heuristics for a test space X are as follows: A test E _ X may be 
thought of  as the set of  mutually exclusive and exhaustive outcomes of a 
well-defined, reproducible operation or p rocedure - - in  effect, E is a mathe- 
matical representation of the procedure. I f  E (or, more accurately, the 
operation or procedure corresponding to E) is executed, then one and only 
one outcome x~E will be secured as a consequence. 

To help fix ideas, we consider the following examples: 

Example 2.2. Let J(f be a Hilbert space (which may be thought of  as 
the Hilbert space corresponding to a quantum mechanical system ~ ) .  Let 
X..= {~ eovf I ]]~]] = 1} be the unit sphere in ~ ,  and let J -  be the set of  all 
maximal orthogonal subsets of  X. Thus, for the test space X, an outcome 
is a normalized vector in ~ (which may be identified with a vector state for 
5P), and a test is an or thonormal  basis for ~ (which may be thought of  as 
representing a maximal observation on 5~ 

Example 2.3. Let (A, ~ )  be a Borel (or measurable) space; that is, a 
pair consisting of a nonempty set A and a o--field Y of subsets of  A. (A 
may be thought of  as a classical sample space and ~ may be regarded as 
the set of  all events for A in the sense of classical probability theory.) Let 
X be the set of  all nonempty sets in ~- and let J -  be the collection of all 
partitions of  A into countably many sets in X. [A test E e Y -  may be 
regarded as an experiment (Kolmogorov,  1956, p. 9) and the outcomes 
A ~X may be viewed as outcomes of  such experiments.] 

Example 2.4. Let L be an orthoalgebra (FGR-I ) .  (L may be thought 
of  as a set of  propositions regarding a physical system.SP.) Let X be the set 
of  all nonzero elements in L, and let Y- be the collection of  all finite 
orthogonal partitions of  1 in L. 

The terminology in the next definition is suggested by the notion of an 
event in the classical theory of probability. 

Definition 2.5. A subset A of a test space X is called an event if there 
exists a test E ___ X such that A _ E. We refer to such a test E as a test for 
A. The set of  all events for X is denoted by g. 
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Suppose that A is an event for the test space X and let E ___ X be a test 
for A. I f  E is executed and the outcome x G E is secured, we say that  the 
event A occurs if xGA and that  it nonoccurs if x r  I f  E, F are bo th  tests 
for the same event A, it is a matter  o f  indifference whether E or  F is 
executed in determining the occurrence or nonoccurrence  o f  A. Thus,  we 
may speak of  the occurrence or nonoccurrence  o f  A without  reference to 
the specific test involved. 

In what follows, we assume that X is a test space, 3- is the collection of  
all tests E :_ X, and g is the collection of  all events A c X. 

3. T H E  C A L C U L U S  OF  E V E N T S  

The introduct ion of  suitable operat ions and relationships in g enables 
us to regard it as a calculus o f  events for the test space X. 

Definition 3. I. A collection o f  events {A~ [ ~ El} is said to be compat- 
ible or simultaneously estable if there exists a test E :_ X such that  As ~ E 
for all ~EI.  

We note that  {A s ~ e l}  is a compatible collection o f  events iff ~)~1 
A~ is an event. 

Definition 3.2. Let A, C E g .  If  A and C are compatible events and 
A n C = ~ ,  we say that  A and C are orthogonal and write A l C. I f  A _L C 
and A u C is a test, we say that  A and C are local complements of  each 
other. 

Every event A has at least one local complement;  indeed, if E is a test 
for A, then C .'= E \ A  is a local complement  o f  A. As a consequence o f  the 
i r redundancy condit ion in Definition 2.1, a test E has only one local 
complement,  namely, the empty event ~ .  

Definition 3.3. I f  A and B are events that  share a c o m m o n  local 
complement  C, we say that  A and B are perspective with axis C and we 
write A ~ B. 

We note that, if A _ X is an event and E _: X is a test, then A ~ E iff 
A is a test. Similarly, A ~ ~ iff A = ~ .  

Lemma 3.4 (Cancellation Law). If  A, B, C G g  with A l C and B J_ C, 
then A wC..~ B w C  ~ A ~ B. 

Proof. I f  D is an axis for A u C ~ B w C, then D w C is an axis for 
A ~ B .  �9 

Definition 3.5. Let A, B e g .  We say that  A implies B and write A < B 
if there is a finite sequence C o , C), C 2 , . . . ,  C, ,Eg such that  A = Co, 
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B = CA, and, for  every i = 1, 2 . . . . .  n, either Ci_ 1 c Ci or Ci_ l  ~ Ci. I f  
A < B and B -< A, we say that  A and B are equivalent events and write 
A=_B. 

The relation _< is reflexive and transitive on do, that  is, it is a p reorder  
on do. Consequently,  the relation ~- is an equivalence relation on do. Also, 
if A _ X  is an event and E _  X is a test, then ~3 <- A -< E. We omit  the 
simple p r o o f  of  the next lemma.  

Lemma 3.6. Let A ___ X be an event and let E _ X be a test. Then: 
(i) A <5;~3 ~ A =;ZS. 

(ii) E - < A  ~ A i s a t e s t .  

Lemma 3. 7. Let A, B, A ' ,  B ' e g  and suppose that  A '  and B '  are local 
complements  o f  A and B, respectively. Then 

A <B ~ B ' < A '  

Proof It  will be enough to prove  (i) A ___B ~ B ' -<  A '  and (ii) 
A ~ B  ~ B ' < A ' .  To  prove  (i), suppose that  A___B. Then B ' c B ' v o  
(B\A) ~A"  with axis A; hence, B'<_A'. To prove  (ii), suppose A ~ B  
with axis C. Then B ' ~  C with axis B and C ~ A '  with axis A; hence, 
B' <_A'. [] 

Example 3.8. The test space X. '= {a, b, c} for  which the quas imanua l  
o f  tests is Y-. '= {{a, b}, {b, c}, {c, a}} is called the little triangle. 

In the little triangle, we note that  {a} • {c} and at the same time 
{a} ~ {c} with axis {b}. Thus,  we have both  {a} < {c} and {a} • {c}, a 
si tuation which seems counterintuit ive.  This leads us to the following: 

Definition 3.9. The test space X is said to be consistent if, for  all 
A, Cedo, A Z C a n d A < C  ~ A = ~ .  

It is easy to see that  X is consistent iff no nonempty  event in X implies 
any of  its local complements .  Also, if X is consistent,  then the equivalence 
relation --- on o ~ is the transitive closure of  the perspectivity relation ~ on 
d ~ In general, the relation ,~ is not  transit ive on the calculus of  events g,  
even for a consistent test space. When  it is, we can also prove  that  
perspectivity is additive in the following sense: 

Lemma 3.10 (Additivity Lemma). Suppose that  ~ is a transit ive rela- 
tion on g and let A,B~,B2~do with A • and A •  2. Then 
B l a B  2 ~ A w B j ~ A u B 2 .  

Proof. Let C be an axis for  B ~ B  2 and let P and Q be local 
complements  of  A w B 1 and A vo B2, respectively. Then,  A u P ~ C with axis 
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B~ and C ~ A wQ with axis B2; hence, A u P  ~ A wQ by transitivity of ~ .  
By the cancellation law (Lemma 3.4), it follows that P ~ Q with axis, say, 
D. Thus, A u B ~ D  with axis P and D ~ A w B 2  with axis Q; hence, 
A wB1 "-~ A wB2 by transitivity of ~ .  �9 

4. ALGEBRAIC TEST SPACES 

If perspectivity preserves orthogonality in if, we say that X is an 
algebraic test space. More formally: 

Definition 4.1. The test space X is algebraic if, for all A, B, C ~ g  with 
A ' . ~ B , A •  ~ B2.C.  

The test spaces in Examples 2.2-2.4 are algebraic. The simplest 
nonalgebraic test space is the little triangle (Example 3.8). 

Theorem 4.2. The following conditions are mutually equivalent: 
(i) X is an algebraic test space. 
(ii) If A, B, C e g ,  A < B, and B J_ C, then A _L C. 
(iii) If A, B, C e g ,  A ~ B, and C is a local complement of A, then C 

is a local complement of B. 

Proof To prove (i) ~ (ii), assume (i) and the hypotheses of (ii). 
Since A < B, there is a sequence of events Ao, A1, A2 . . . . .  A, such that 
A = A 0 ,  B - - A , ,  and, for each k = l , 2 , . . . , n  either A k _ ~ _ A k  or 
A k _ ~ A k .  If Ak_~C--Ak and A k2.C, it is clear that Ak_I2 .C.  If 
A k _ l ~ A k  and Ak2.C, then A k _ I L C  by (i). Hence, A = A o 2 . C  by 
induction. To prove (ii) ~ (iii), assume (ii) and the hypotheses of (iii). Let 
D be the axis of the perspectivity A ~ B. Since B ~ A, we have B < A, so, 
because A _L C, (ii) implies that B 2. C. Let P be a local complement of 
B w C, so that C w P ,-~ D with axis B. From this, and the facts that D ~ C 
with axis A and P ~_ C wP, we have P < C. But C 2.P, so (ii) implies 
P L P; hence, P = ~ and therefore C is a local complement of B. That 
(iii) =~ (i) follows from the observation that if two events are orthogonal, 
then either event may be enlarged to a local complement of the other. �9 

Corollary 4.3. If X is algebraic, then ~ is transitive on g. 

Proof. Suppose A, B, P e g  with B ~ A and A ~ P. Let C be an axis 
for A ~ P. By part (iii) of Theorem 4.2, C is a local complement of B; 
hence, B ~ P  with axis C. �9 

Corollary 4.4. If  X is algebraic, then X is consistent. 

Pro@ If A, C e g  with A <- C and A L C, then A 2.A by part (ii) of 
Theorem 4.2, hence, A = ~ .  �9 
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Corollary 4.5. Let X b e  algebraic and let A, B e g .  Then A -< B iff there 
exists C ~ 8  with A _k C and A uC,,~B.  

Proof I f A _ l _ C a n d A w C ~ B ,  t h e n A ~ A w C ~ B ,  s o A - < B .  Con- 
versely, suppose A < B and let D be a local complement of  B in g. Then 
A _1_ D by part (ii) of Theorem 4.2. Let C be a local complement of  A wD 
in ~. Then, A l C and A wC,-~B with axis D. I 

Theorem 4.6. (Additivity Theorem). Let X be algebraic and suppose 
that A1, A2, B), B2~g with A 1 ~ A2,  Bl ~ B2, and A 1 • B I . Then, A2 _L B2 
and A~wB~ ~ A 2 u B  2. 

Proof. That A2 • B2 follows from two applications of the condition in 
Definition 4.1. Using the additivity lemma (Lemma 3.t0) twice, we have 
A1wB I ~ A I w B z ~ A 2 w C  ~. 1 

5. THE LOGIC OF A TEST SPACE 

The relation -< is a preorder on ~, and therefore it induces a partial 
order relation on the quotient space C / =  as in the following definition. 

Definition 5.1. If A ~ ,  we define re(A)..= {Beg  lA - B }  and we refer 
to re(A) as the proposition affiliated with A. The set I I (X) := {re(A) ] A eS},  
partially ordered by n(A) < re(B) iff A < B, is called the logic of  the test 
space X. If re(A)< re(B), we say that re(A) implies re(B). We define 
0, 1 M-I(X) by 0 = n ( ~ )  and 1 = re(E), where E ~ X is any test. 

If  X is understood, we usually write II rather than H(X). Also, if x eX, 
we usually write 7c(x) rather than ~({x}). 

Suppose that A, C, D e N  and that both C and D are local comple- 
ments of A. Then C ~ D with axis A, and it follows that ~(C) = ~(D). This 
observation leads us to our next definition. 

Definition 5.2. If A eg ,  we define the negation re(A)' of  the proposition 
re(A) eYI by 7r(A)'..=rc(C), where C is any local complement of A in g. 

Evidently (re(A)')' = re(A), 0 ' =  1, and 1 '=  0. Also, by Lemma 3.7, if 
A, B ~ d  ~, then r~(A) -< re(B) =~ ~z(B)' < (A)'. 

The heuristics for Definition 5.1 and 5.2 are as follows: If  A eg ,  then 
a test E __q X is called a test for the proposition r~(A) if there is an event 
Be~(A) with B _c E. If  B occurs as a consequence of an execution of  E, we 
say that the proposition re(A) is confirmed, otherwise we say that ~(A) is 
refuted. We note that re(A) is refuted iff re(A)' is confirmed. 
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Lemma 5.3. The following conditions are mutually equivalent: 
(i) X is a consistent test space. 

(ii) If A, D ~g, then rt(D) _< 7z(A), 7t(A)' ~ 7z(D) = 0. 
(iii) (H, <,  ', 0, 1) is an orthocomplemented poset. 

Proof. Assume (i) and the hypothesis of (ii). Since re(D) -- re(A)', we 
have re(A)= (g(A)')'-< re(D)', so re(D)<-<_ 7z(A)_< 7z(D)'. Let B be a local 
complement for D. Thus, n(D) -< g(D)' = re(B), so that D - B. But, D _L B; 
hence, D = ~ by (i). To prove that (ii) =*- (iii), note that, if (ii) holds, 
then, for every A eg,  the infimum re(A) ,x re(A)' exists in 11 and is equal to 
0; hence, by the de Morgan law, the supremum ~(A) v z(A)' exists and 
equals 1. That (iii) ~ (i) is clear. �9 

If A, C e g ,  then, obviously, A l C ~ re(A) < re(C)'. As an immediate 
corollary of Theorem 4.2, we have the following result: 

Lemma 5.4. X is an algebraic test space iff, for A, CEg,  
A _L C ~ ~(A) -< ~(C) ' .  

As a consequence of Lemma 5.4 and the additivity theorem (Theorem 
4.6), the orthogonal sum, introduced in the next definition, is well defined. 

Definition 5.5. Let X be an algebraic test space and let A, C6d  ~ Then, 
if ~(A)< re(C)', we define the orthogonal sum rt(A)| in II by 
~(A) | ~z(C) = ~(A u C). 

Lemma 5.6. Let X be an algebraic test space and let A, B ~g. Then 
~(A) _< re(B) iff there exists C e g  with 7r(A)_< re(C)' such that 7z(A)G 
~(c) = ~(8). 

Proof. Corollary 4.5 and Definition 5.5. �9 

In the following theorem, we establish contact between algebraic test 
spaces and orthoalgebras. The proof of the theorem is a simple matter of 
checking the conditions in Definition 2.1 of FGR-I. 

Theorem 5. 7. If  X is an algebraic test space, then the logic II of X 
forms an orthoalgebra with respect to the partially defined binary opera- 
tion G. 

In Theorem 5.7, it is plain that the orthocomplement of a proposition 
in 11 coincides with its negation as in Definition 5.2. Furthermore, by 
Lemma 5.6, the partial order on 11 induced by the orthogonal sum 
coincides with the implication relation given in Definition 5.1. 

In Example 2.2, the logic 11 is isomorphic to the complete orthomod- 
ular lattice of all closed linear subspaces of the Hilbert space aug; in 
Example 2.3, it is isomorphic to the Boolean algebra of sets formed by the 
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a-field ~ ;  and in Example 2.4, it is isomorphic to the orthoalgebra L. 
Thus, in particular, every orthoalgebra is isomorphic to the logic of an 
algebraic test space. 

6. COHERENT TEST SPACES 

Let X be an algebraic test space with logic FI. In this section, we 
develop conditions guaranteeing that H is an orthomodular poset (OMP) 
or an orthomodular lattice (OML). 

Definition 6.1. Let x, y ~ X a n d  let M, N ~ X. If {x} 1 (Y}, we say that 
x is orthogonal to y and write x • y. If  x ~ y and x is not orthogonal to 
y, we write x~y .  We define M--=={xsXlx_Ly for all yeM}  and 
M l •  (M • i .  If  x / y holds whenever x, y e N with x -r y, then N is said 
to be a pairwise orthogonal set. 

We note that any event is a pairwise orthogonal set. The following 
example shows that the converse is false. 

Example 6.2. Let X,=  {a, b, c, x, y, z}, g .-= {E, F, G}, where E ,= 
{a, z, b}, g , =  {b, x, c}, and G.'= {c, y, a}. Then (X, J ) i s  an algebraic test 
space, called the Wright triangle, and N :=  {a, b, c} is a pairwise orthogonal 
subset of X that is not an event. 

Definition 6.3. The test space X is coherent if every pairwise orthogo- 
hal subset of X that is contained in the union of finitely many tests is an 
event. 

Examples 2.2 and 2.3 are coherent test spaces. The test space in 
Example 2.4 is coherent iff the orthoalgebra L is an OMP. A simple 
inductive argument yields the following result: 

Lemma 6.4. X is coherent iff, for A, C~&, A _ C • ~ A _k C. 

The test space X is both algebraic and coherent iff, for A, C e # ,  the 
three conditions ~(A) < zr(B)', A • B, and A _ B ~ are mutually equivalent. 

Theorem 6.5. The logic I-I of a coherent algebraic test space J( is an 
orthomodular poset. Furthermore, if A, B e&, the following conditions are 
mutually equivalent: 

(i) zc(A) -< ~z(B). 
(ii) Bz c__A I. 

(iii) A l •  __B :j-. 

Proof Let A,B, Ce& with AA_B, B L C ,  and A L C .  Then, Aw 
B _c C ~, and it follows from Lemma 6.4 that A wB u Ce&. Therefore the 
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orthoalgebra 11 is an OMP by Theorem 2.12 of FGR-I. To prove 
(i) =~ (ii), assume that n(A)<_re(B) and that x ~ B  • By coherence, 
B J_ {x) and, hence, A 2_ {x} by Theorem 4.2, from which it follows that 
x ~ A  • That ( i i )~( i i i )  is clear, so it will be enough to prove that 
(ii) =~ (i). Thus, assume that B • _ A • Let B' be a local complement of 
B and note that B ' c  B • so B ' ~  A• hence B'_L A by coherence. There- 
fore, 7~(B)' _< zt(A)', so 7r(A) <_ ~(B). �9 

Lemma 6.6. Let X be algebraic. Then X is coherent iff, for every A eo ~, 
the supremum Vx~A re(x) exists in II and equals re(A). 

Proof. Randall and Foulis (1983, Lemma 41). �9 

Definition 6. 7. A square in X is an ordered four-tuple (a, b, c, d) of 
outcomes in X such that a _1_ b, b _L c, e I d, d _1_ a, a ~ c, and b ~ d. The test 
space X is square-free if it admits no squares. 

Lemma 6.8. Let X be a coherent, algebraic, square-free test space, let 
A, B ~g, and suppose that the infimum z(A) ^ re(B) fails to exist in the 
OMP rI. Let D ..=A •177 ~ B  • Then D is an orthogonal set that is not an 
event. 

Proof First suppose that D is not an orthogonal set. Then there exist 
c, d s D  with c ~ d. Because d~A • it follows that A • _ {d}X; hence, that 
n(d) < re(A). Therefore, by Corollary 4.5, there exists N e g  such that 
{d} A_ S and {d} w N ~ A. Thus, by Theorem 6.5, we have ({d} u N)XX = 
A • hence, we can replace A by {d} w N  and thus assume, without loss of 
generality, that deA .  Likewise, replacing B by an equivalent event if 
necessary, we can assume that deB.  Thus, d s A  n B. Let A', B ' s g  be local 
complements of A and B, respectively. If  A' were compatible with B', then 
z~(A)' would be compatible with re(B)' in the OMP II (FGR-I);  hence, r~(A) 
would be compatible with re(B) in the OMP H. However, in an OMP, two 
compatible elements always have an infimum. Since re(A) ^ rt(B) does not 
exist, it follows that A 'w B' cannot be an event. Since X is coherent, it 
follows that there exist e t A '  c _ A I , f ~ B ' c _ B  x such that clef. Because 
d e A  riB, we have e, f l d. Since c~D = A•  c~B •177 we also have e , f  _k e. 
Thus, (c,f, d, e) is a square, contradicting the hypothesis and proving that 
D is an orthogonal set. If  D were an event, the fact that D = A x• n B •177 
would imply that 7z(D)= zt(A)/x re(B), again contradicting the hypo- 
thesis. �9 

The following theorem generalizes the well-known Loop Lemma for 
orthomodular lattices (Greechie, 1971; Kalmbach, 1983, p. 43). We use 
# M to denote the cardinal number of a set M. 
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Theorem 6.9. Let X be a coherent, square-free, algebraic test space. 
Suppose that there exists a nonnega, tive integer m such that # (E n F) -< m 
holds for all tests E, F __ X with E -r F. Then l-I is an or thomodular  lattice 
(OML).  

Proof Suppose that H is not an OML. Then there exist A, B e g  such 
that n(A) A n(B) fails to exist in H. By Lemma 6.8, D : = A •  •177 is an 
orthogonal subset of  X that is not an event. Suppose that C is any event 
contained in D. Arguing as in the proof  of  Lemma 6.8, we can replace A 
and B by equivalent events, if necessary, and thus assume without loss of  
generality that C __ A n B. Let E, F _ X be tests for A, B, respectively. I f  
E = F ,  then A and B are compatible, contradicting the fact that 
n(A) A re(B) fails to exist. Therefore, E # F, and it follows from the fact 
that C _c A ~ B ___ E c~ F that # C -< m. By coherence, every finite subset of  
D is an event. Hence, no finite subset of  D contains more than m elements, 
and it follows that D is finite, contradicting the fact that D is not an 
event. �9 

7. SUPPORTS AND THE CANONICAL MAP 

In the context of  quasimanuals, supports were originally introduced in 
Fpulis et al. (1983). A support  S c_X may be regarded as the set of  all 
outcomes in X that are possible under a specific set of  circumstances. 

Definition 7.1. A support for the test space X is a subset S of  X that 
enjoys the following exchange property: I f  E , F ~ X  are tests, then 
Sc~E~_F ~ S c ~ F g E .  

Note that the empty set and X itself are supports and that a nonempty 
support  must have a nonempty intersection with every test. Also, if 

# S E X ,  then S is a support  iff (S, J s )  is a test space, where 
J s . ' = { E n S  ]E~r  [The exchange property enforces the irredundancy 
condition for (S, Js).]  In this way, each nonempty support  S can be 
regarded as a test space in its own right. 

Definition 7.2. We denote by Y the set of  all supports S __ X. 

Clearly, the set-theoretic union of  supports is again a support; hence, 
partially ordered by _ ,  5~ forms a complete lattice. We refer to 5 ~ as the 
support lattice of the test space X. 

Lemma 7.3. Let A, B e g  with A ~ B ,  let S e 5  g, and suppose that 
E, F ___ X are tests for A, B, respectively. Then, S n E ___ A *> S n F ___ B. 

Proof. Let C be a common local complement for A and B and assume 
that S n E _c A. Since E and A w C are tests for A and S n E _c A _~ A w C, 
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we have Sc~(A u C )  ~ E  by the exchange property. Therefore, 
S n (A w C) _ S c~ E _~ A and, since A ~ C = ~Z~, it follows that S n C = ~ ;  
hence, S c~ (B u C) = S n B ~ B ~_ F. But (B u C) and F are tests for B, so 
S n F ~ B ~ C follows from another application of the exchange property. 
Because S n C = ~ ,  we conclude that S n F c_ B. �9 

Theorem 7.4. Let A, B e g  with ~il < B, let SeS : ,  and suppose that 
E, F < X are tests for A, B, respectively. Then, S c~ E c A => S n F c B. 

Proor In view of Lemma 7.3, it is sufficient to prove the theorem for 
the special case in which A ~_ B. I f  A ~ B, E is a test for A, and F is a test 
for B, then both E and F are tests for A; hence, by Lemma 7.3, 
S n E ~ _ A  ~ S n F c _ A  c_B. �9 

Definition 7.5. I f A ~ N ,  we define [A]:= u { S 6 5 : I S n E ~ A } ,  where 
E is any test for A. 

As a consequence of Lemma 7.3, [A] is independent of  the choice of  
the test E for A and, because the union of supports is a support,  [A] eS:.  
The map [ �9 ]: g ~ 5" defined by A ~ [A] is called the canonical map, and a 
support  having the form [A] for some A e g  is called a principal support. We 
note that, if E is a test for A, then [A] n E ~ A. 

Theorem 7.6. The principal supports are meet-dense in the complete 
lattice 5P; that is, every support is the infimum of the principal supports 
that contain it. 

Proof. Foulis et al. (1983, Lemma 38). �9 

Theorem 7.7. I f  A, B ~ d  ~ with A < B, then [A] _ [B]. 

Proof. Theorem 7.4. �9 

I f  A, B e g  with A = B, then [A] = [B] by Theorem 7.7. Therefore we 
can "lift" the m a p  [ . ] :  g ~ 5  ~ to a map [ . ] :  I I - ~ 5 : ,  also called the 
canonical map, by defining [To(A)] = [A] for all A ed  ~ Thus, [ �9 ]: I I  ~ 5: is an 
isotone map of the poser I I  onto a meet-dense subset of  the complete lattice 
5:. 

Motivated by Definition 8.5 in FGR-I ,  we make the following defini- 
tion: 

Definition 7.8. I f  x e X ,  we define [x] = [{x}], and we say that x is 
modal if [x] ~ ~ .  I f  every x e X  is modal, we say that the test space X is 
modal. 

The test spaces in Examples 2.2-2.4 are modal. The following example 
shows that not every test space is modal. 
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Example 7.9. Let X,= {a, b, e, x, y, z, v}, let 5- ..= {E, F, G, H}, where 
E..= {a, x, v}, F ,=  {v, y, b}, G := {v, z, c}, and H.'= {a, b, c}. Then (X, 9-) is 
an algebraic test space, but v is not a modal element of a v. This test space 
is called the wedge. 

Lemma 7.10. (i) x E X  is a modal iff x~[x]. 
(ii) X is modal iff A _~ [A] for every A ~g. 

Proof (i) Suppose that [x] # ~Z~ and let E be a test for {x}. Then 
r [x] c~E _~ {x}, and so x~[x]. (ii) If A _~ [A] for every event A, then 

x~[x] for every x~X. Conversely, suppose that x~[x] holds for all x ~ X  
and let A~g .  Then, for x~A,  we have { x } < A ,  and it follows from 
Theorem 7.7 that x~[x] _~ [A]. �9 

8. SUPPORTS IN X AND IN H 

In this section we discuss the connection between supports in an 
algebraic test space X and supports in the orthoalgebra II (FGR-I,  
Definition 7.1). Note that to say that S§ _~ H is a support in H means that 
whenever A, B s g  with A Z B, ~(A w B)6S+ iff 7r(A)~S+ or ~z(B)~S+. In 
particular, if S+ is a support in I-I, then it is an order filter in H. We omit 
the straightforward proof of the following lemma. 

Lemma 8.1. Let A, B e g  with A < B. Then, for all SeS~: 
(i) Sc~A = ;~ ~ S ~_ [Tz(A)']. 
(ii) S ~ B = ~  ~ Sc~A =~J. 

Definition 8.2. If  $65  p, we define Sri ~ H by 

Sn:={~z(A) I A ~g and S n A  v~ ~ }  

Lemma 8.1 guarantees that the condition S ~ A r ~ in Definition 8.2 
is independent of the choice of the representative A of the proposition 
~(A) ~I-I. 

Theorem 8.3. If X is algebraic and S~5 p, then Sn is a support in the 
orthoalgebra H and S = {x~X]z~(x)ESn}. 

Furthermore, if S, T~Sf, then S _ T r Sn - Tn. 

Proof. Let A, C ~ g  with A Z C. We have to prove that ~(A ~ C) = 
~(A) | ~z(C)~Sn iff at least one of the propositions ~(A) or ~(C) belongs to 
Sr~. But this translates into the obvious condition that S c~ (A u C) r ~ iff 
Sc~A r  S ~ C # ~ .  Also, 

S = { x ~ X [ S ~ { x }  # ;~} = { x e X l ~ ( x ) ~ S , } .  

That S _  T ~ Sn ~ Tn is obvious. �9 
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Example 8.4. If X is a nonempty set and J -  .'-- {X}, then (X, ~--) is an 
algebraic, coherent, square-free test space, ~ = b ~ is the set of all subsets of 
X, [A] = A  for all A s g ,  and the map ~: d~--*l-I given by A~-*Tz(A) is an 
isomorphism of the Boolean algebra g onto II. We refer to (X, {X}) as 
a classical test space. Suppose that X is an infinite set and define 
S, . '=  {Tz(A) I A is an infinite subset of X}, noting that S ,  is a support in II. 
Clearly, there is no support S c__ X for which S ,  = Sn. 

As Example 8.4 shows, the order monomorphism S ~ Sn from test- 
space supports S ~ X to orthoalgebra supports Sn c_ II is not necessarily 
surjective. However, we do have the following result: 

Theorem 8.5. Let X be an algebraic test space in which every test is a 
finite set. Then, the map S ~ Sn is an isomorphism of the lattice 5e onto 
the lattice 5r of all supports in the orthoalgebra II. 

Proof Let S+ s Sen. Since every test is finite, it follows that every 
event A s g  is finite; hence, by induction on the number of elements of 
A, rc(A)sS+ iff there exists a~A such that rc(a)ES+. Let S.'= 
{xsJ (  ] ~c(x)eS+ }. We claim that S~Se. Indeed, let E, F c_ X be tests such 
that Sc~E~_F. Let xESc~F and suppose that xCE. Note that F\E is 
perspective to E\F with axis E~F.  Therefore, re(x)~ rc(F\E)= rc(E\F) 
and, since ~(x)s  S+, it follows that rc(EkF)~ S+; hence, there exists y ~ EkF 
such that re(y)sS+.  But then, y ~ S c~ (EkF), contradicting S c~ E _  F, and 
proving that SsSe.  Evidently, S+ = S n ,  showing that S~-*Sn maps 5 e 
onto ~ n .  �9 

9. LOGICAL CLASSIFICATION OF SUPPO RTS  

We regard a support S ~ ~ as the set of all outcomes that are possible 
when tested under a particular set of circumstances. Specifically, if E is a 
test, then S ~ E is the set of outcomes in E that can be secured and EkS is 
the set of outcomes in E that are impossible if the test E is executed under 
the given circumstances. Thus, we can introduce notions corresponding to 
the classical Aristotelian modalities. 

Definition 9.1. Let SeSe, Aeg ,  and let E be a test for A. 
(i) If  S c~ E _ A, we say that A is S-necessary. 
(ii) If S c~ A :~ ~ ,  we say that A is S-possible. 
(iii) If Sc~A = ffS, we say that A is S-impossible. 
(iv) If A is S-possible but not S-necessary, we say that A is S-contin- 

gent. 

Notice that parts ( i i ) -( iv)  of Definition 9.1 are unavoidable conse- 
quences of part (i) and our intuitive notions of  these modalities. 



Supports in Test Spaces 1689 

The next result, which is a direct consequence of Definition 7.5, shows 
that [A] is the largest support for which the event A is necessary. 

Lemma 9.2. Let S ~ ,  A ~8. Then A is S-necessary iff S ~ [A]. 

Definition 9.3. Let S ~ .  
(i) S is prime iff whenever A and C are S-possible events, there exists 

and S-possible event D with D -< A, C. 
(ii) S is dispersion-free iff there are no S-contingent events. 
(iii) S is minimal iff (i) S # ~ and (ii) 7 ' ~  with ~ r T c S ~ T = S. 

Suppose that L is an orthomodular lattice and X = L\{0} is organized 
into a test space as in Example 2.4. I f / i s  a proper ideal in L, then S , = L \ I  
is a nonempty support for the test space X. Furthermore, I is a prime ideal 
in the conventional sense that ~(A) /x ~(B) ~I  ~ ~(A) e l  or ~(B) ~I  iff S is 
a prime support, I = ~b 1(0) for a lattice homomorphism ~b from L onto the 
two-element Boolean algebra {0, 1} iff S is dispersion-free, and I is a 
maximal proper ideal iff S is minimal. For a Boolean algebra L, these three 
conditions turn out to be equivalent. More generally, we have the following 
result: 

Lemma 9.4. Suppose X is consistent, let Z r S ~ ,  and consider the 
conditions; (i) S is prime, (ii) S is dispersion-free and (iii) S is minimal. Then 
(i) ~ (ii) ~ (iii). 

Proof (i) ~ (ii): Suppose that S is prime and let A be an event that 
is S-possible. We have to prove that A is S-necessary. Let C be a local 
complement of A. It is enough to prove that C is S-impossible. However, 
if C were S-possible, then there would exist an S-possible event D with 
D -< A, C and since X is consistent, it would follow that D = ~ ,  contradict- 
ing D ra S ~ ~23. 

(ii) ~ (iii): Suppose that S is dispersion-free and let TeS~ with 
# T _  S. Let xeS .  Then {x} is S-possible, so {x} is S-necessary, and 

therefore T c_ S _c [{X}]; hence, x ~ T. [] 

In general neither of the implications in Lemma 9.4 can be reversed. For 
instance, let X be the unit sphere in a three-dimensional Hilbert space and 
organize X into a test space as in Example 2.2. Choose (beX and let 
S.'= { ~ X ]  (~b, 0 )  ~ 0}. By Cohen and Svetlichny (1987), S is a minimal 
support in X, but X admits no dispersion-free supports. An example of a 
dispersion-free support that is not prime is as follows: Let X..= {a, b, c, d} 
and organize X into a test space by taking E :=  {a, b} and F :=  {c, d} as the 
only tests. Then S.'= {a, c} is a dispersion-free support that is not prime. 

A particularly interesting and important class of supports are those 
singled out by the following definition. 
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Definition 9.5. A support  S e 5  P is said to be Jauch-P i ron  if whenever 
A, B e g  are bo th  S-necessary, there is a C e d  ~ such that  C is S-necessary 
and C < A, B. 

Let W be a yon  N e u m a n n  density operator  on the Hilbert  space A "~ of  
Example 2.2. Then the set S ,= {~b EJ2[ WO r 0} is a J a u c h - P i r o n  suppor t  
in X. However ,  in this example, there are infinitely many  n o n - J a u c h - P i r o n  
supports.  In  Example 2.3, every support  in X is J a u c h - P i r o n .  In Example 
2.4, if L is a Boolean algebra, then every support  in X is J a u c h - P i r o n ;  
otherwise, in general, this is not  so. In  a for thcoming paper, we shall give 
a detailed exposition of  the theory o f  J a u c h - P i r o n  supports  and its 
connect ion with J a u c h - P i r o n  probabil i ty measures on orthoalgebras.  
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